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BASIC COMPUTATIONAL PROBLEMS IN THE FINITE ELEMENT
ANALYSIS OF SHELLSt
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Abstract-The purpose of this paper is to examine the two fundamental questions in the finite element analysis
of shells; namely, the rates of convergence resulting from different interpolation schemes for the inplane and
normal displacements, and the dependence of the condition number of the resulting algebraic system on the
various parameters both of the shell and of the discretization.

1. INTRODUCTION

THERE is a fundamental difference between the plate and the shelL Only in the latter there
exists a coupling between the tangential (in-plane) and normal displacements, It has been
shown [IJ that for the plate (or equivalently the beam), the condition number of the global
matrix is independent of the intrinsic parameters of the plate (such as thickness to length
ratio), and that it varies as N:s ' where N es denotes the number of elements per side. For a
deep shell, this coupling may completely alter the behavior of the condition number as a
function of both the number of elements and the shell's intrinsic parameters.

In high order problems where the condition number grows rapidly with the number of
elements, and in other problems, as with certain shells, where it may critically increase
with certain parameters, round-offerrors become a serious problem and may even dominate
the total error in the numerical solution. In such cases no effort should be spared in searching
for techniques for neutralizing the effect of ill-conditioning.

Two principal avenues are open for improving the ratio between discretization and
round-off errors: the first involves transformation of the variables, and the second, the
use of higher order elements. Both these possibilities are explored here.

The coupling between the tangential and normal displacements also gives rise to
questions concerning their mode of interpolation. The normal and tangential displacements
can either be interpolated independently [2J, which is the more usual technique, or in a
coupled manner [3]. If they are interpolated separately, which is technically more con
venient, then the question arises ofwhat the relation is between the order of the interpolating
polynomials for the tangential and normal displacements such that maximal efficiency can
be attained. Thus, a given rate ofconvergence is attained with a minimal number ofdegrees
of freedom per element. Numerical experiments [4J indicate that optimal efficiency is often
obtained with equal interpolation schemes for both the inplane and normal displacements,
This is confirmed here theoretically.

t This work was supported by the Office of Scientific Research of the USAF under contract No.
F44620-67-cOOI9.

t Assistant Professor, Boston University, Department of Mechanics. Boston, Massachusetts 02215.
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2. CONDITION NUMBER

The condition number Cn(K) with respect to the Euclidean norm of the positive definite
matrix K is defined as the ratio between the maximal (Nth) eigenvalue of K A.~ and the
minimal (1st) eigenvalue A.~ of K. This number provides a measure of the computational
effort required for obtaining a certain accuracy in solving the linear system K, = b.

The condition number depends basically on two aspects of the problem: on the nature
of the continuous equations and on the discretization method. The conditioning associated
with the first aspect is referred to as natural. The conditioning depending on the types of
elements employed and on their geometrical parameters is referred to as triangularization
conditioning. Of primary interest here is the natural condition number intimately associ
ated with the nature of the shell problem. Methods for evaluating the effects of the tri
angularization have been discussed elsewhere [1].

Let us denote by K and M the stiffness and mass matrices respectively. and bv
Af. A.~. A{f and A.,~ their extremal eigenvalues. From Rayleigh's principle

is readily obtained where ),1 and A.N are the minimal and maximal eigenvalues of

(I)

n = 1,2•... ,N. (2)

In the case of discretization by a regular mesh of finite elements, M is bounded from below
and above, and hence the ratio ANIA I provides, in this case, a good estimate for Cn(K).
Moreover, since the error in AN is of the order I and in 11 much smaller, for the present
purposes the approximate eigenvalues in equation (1) can be replaced by the exact ones,
thereby revealing the dependence of the natural condition number on the nature of the
continuous problem.

In the more general case of irregular meshes the bound [[ ]

(3)

can be used, where Pmax is the maximal number of elements meeting at a nodal point and
-i~e and -i';e the maximal (nth) and minimal (1st) eigenvalues of the element matrices k e and
me corresponding to K and M, respectively. Max..(A) denotes the maximal value of Aover
e = 1,2, ....

To explore the dependence of Cn(K) on the basic shell parameters the bound given by
equation (3) is used on the simple one-dimensional case of a circular arch. The element
matrices keand me are derived in this case from the following energy expressions

(4)

(5)
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(6)

(7)

in which h is half the element's size, t the thickness of the shell and r the radius ofcurvature.
Transforming the element from the s-system to the ~-system where it is bounded by

1 S ~ S 1, equations (4) and (5) become

Et fl [(dU ~ )2 ~~ (~ du _ d2~)2J d
ICp 2h -1 d~+ r W + 12 h2 r d~ de ~

ICk = ~hfl (u2+w2)d~.

Also

(8)
t

= 2N rh e

h {3
r 2Ne '

where {3 is the opening angle of the arch, L the length of the arch (L = {3r), r = t/L and
N e the number of finite elements in the discretization.

No loss of generality will occur in equations (6) and (7) if the following conditions are
set: h = 1and Et/h = 1. The element stiffness and mass matrices derived from equations (6)
and (7) are denoted by ke and me, respectively. ).:e denotes the maximal eigenvalue of ke ,

and ATe and A;:'e the minimal and maximal eigenvalues, respectively, of me'

The first element on which analysis will now be carried out is denoted by B(2, 3), which
indicates that within the element u is interpolated by quadratic polynomials, and W by
cubic. This element is associated with the 7 nodal variables (Ul' WI' W~I' U2' U3' W3' W~3)'

but the slope variables can be derived either with respect to ~ or with respect to s = h~.

Subsequently a search will be made for an h which yields the best conditioned matrix.
Since Pmax and },Te are constants, the bound (3) on Cn(K) depends only on Al and A:e .

A1 itself depends on the parameters of the arch and on the boundary conditions, and it can
generally be written as [5J

(9)

where c depends on {3, r and the boundary conditions. For the case of a simply supported
arch with r < 1/50 and {3 > n/5, c is almost constant.

Figure 1 depicts the variation of A.~ (since all ke are equal the subscript e is dropped from
ke) for different values of L/t vs. N". It has been drawn only for {3 = n/2 since there are
only slight variations of A; with {3. It can be seen from Fig. I that in the range Ne < L/t,
2; is nearly constant, and hence in this range Cn(K) becomes

(10)

where e denotes a numerical coefficient.
For the range N e > L/t it becomes

Cn(K) eN:. (11 )

The range N e > L/t is of little interest, however, as the size of the element there is com
parable to the thickness. Useful results are expected with far fewer elements.

In Figs. 2 and 3 the predictions of equation (10) are well confirmed numerically.
This behavior of the natural condition number can also be explained by equation (I), by
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FIG. I. Variation of ;t; for a circular element with the number of elements N e • Numbers on the curves
indicate values of the ratio Lit.

(12111 = 2,3, ...

examining the dynamical behavior of the shell. Consider, for example, a complete ring. Its
bending or flexural frequencies (in fact, their square) are given by [6]

Ttl" n2(n 2 - l)2
-------~

4r4
/12 + 1

while the extensional frequencies are given by

n = 0, 1. (13)
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FIG. 2. Variation of the condition number C. with N., in the case of simply supported circular arch with
and without energy scaling.



Basic computational problems in the finite element analysis of shells

7
1/4 ring

N•• 10

1709

c
U

'"E 6

(14)

5 L-.__-'-__--'-__--'

I 2

log Lit

FIG. 3. Variation of the condition number C., in the case of a 1/4 ring, as a function of the length to
thickness ratio.

The lowest eigenvalue is evidently flexural and has the value

A(b) _ ~ m
3

2 - 5 r4 '

For n < 2r/t the maximal eigenvalue is extensional, so that Cn(K) = cn2r2/t 2 and n,
the mode number, is proportional to N e . For h > 2r/t the maximal eigenvalue is flexural
and Cn(K) = ch 4

.

From the above argument it can be concluded that the natural condition number
should not depend strongly on the type of element employed in the discretization process
[the influence of the type of element will be manifested in A'i!/A't in equation (I)J, but rather
on the type of problem. Thus by using higher order elements an increase is expected in the
rate of convergence without much alteration of the condition number. This in turn permits
a certain control over the ratio between the discretization and round-off errors. This
possibility will be examined in the next section.

In two-dimensional cases the maximal frequency depends on the number of waves per
side, and hence the condition number also will grow as a function of the number of elements
per side rather than of the total number of elements in the domain. This explains the
advantage of experimenting with one-dimensional problems where ill-conditioning
can be achieved with fewer variables (in fact square root) than in two-dimensional
problems.

Now the possibility of improving Cn(K) by a transformation of variables (scaling) is
examined. In fact, as f3 is decreased, the bending and extensional energies in equation (6)
tend to decouple, and at the limit, f3 = 0, the condition number [as given by equation (10)J
loses significance. It is proposed, therefore, to scale the extensional energy, as for plate
problems, via the variable transformation

t
u = £1

h
(15)
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which transforms equations (6) and (7) into

J = !E~fl [(dU 13h
z w)Z L(f3t du _dZW)ZJ ~

p 2 h3 -I d~+ Lt +12 L d~ d~z d(

and

(16)

(IS)

Jk = ~hFI «:+Wz
) d~. (17)

The element stiffness and mass matrices derived from equations (16) and (17) are denoted
by k and m, respectively. By A~ is denoted the maximal eigenvalue of k, by AT the minimal
eigenvalue of mand by )0; the maximal eigenvalue of m. For the 7 d.oJ. element IJ = 7.

Also

l>h
2

_ 13 L 1
-L- - - -4---2 '
t t N e

For N e > 5 and 13 < n12, A; is fairly constant (assuming for the sake of convenience that
Et 31h3 = 1 and h = 1), while for moderate values of tlh, Af is independent of t/h. Thus it is
concluded from equation (3) that for N e > 5, Cn(K) = eN: as in the beam problem. As
seen in Fig. 2, scaling becomes indeed more effective [or Cn(K) more meaningful] as 13
approaches zero. For 13 > nl3 it is only partially useful in improving the condition of K.
Nevertheless, in case Lit is large it would be sensible to assume a priori that the bending
solution is inextensional.

Apart from energy scaling, the condition of K can be improved by choosing an appro
priate scale for h in the nodal variable (dwlh d~)i' In Fig. 5 C.(K) for a quarter of a ring is
drawn vs. h. It is seen that as in the case of a beam there exists here an optimal h, which is
nearly equal to 7, but in the range 1 < h < 10 the changes in Cn(K) with respect to the
scale of h are only slight.
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FIG. 4. Variation of the ratios between the first and nth eigenvalues in a spherical shell as a function of n
for different radius to thickness ratios.
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FIG. 5. Variation of Cn , in the case of a 1/4 ring, with h appearing in the slope variable (dw/h d~).

3. DISCRETIZATION ERRORS

Where es and eb denote the true extensional and bending strains, respectively, the
variational technique for obtaining approximate solutions consists of looking for an
admissible es and eb that will minimize the expression

(19)

Any arbitrary es and eb chosen from an admissible finite element space yields a btff'p higher
than that at the approximate solution. In view of this, the technique [8J to use for estimating
the rate of convergence is to choose a convenient (but reasonable) es and eb and to estimate
with them the error in the energy btff'p. This estimate is an upper bound of the error in the
approximate solution. A natural choice for es and eb is that obtained from the interpolate
of the true solution. In this case, if u is interpolated by polynomials of degree p, and Hi by
polynomials of degree q, then by Taylor's theorem [9J

I

dU dii'l \dP+1uj--- < C hPmax-
ds ds - 1 dsP+ 1

(20)

where maxl~1 indicates the maximal absolute value of ~ in the complete structure. The
coefficients Cl' C2 and C 3 arise from the residual terms in Taylor's expansion, and hence
if p and q are not far apart the coefficients also are not far apart.
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In order to establish the relation between p and q yielding a comparable error in the
extensional and bending energies, it is observed that

(21 )

According to equation (20), the errors in es and eb result principally from the terms du/ds
and dZw/dsz, respectively. Hence the error in the energies becomes ofcomparable magnitude
under the condition

(22)

where s = rO.
For an (almost) inextensional solution w du/dO, and thus for a reasonable behavior

(dPw/dOPbeing comparable to dqw/dOq) of w, equation (22) is reduced to

(23)

Asymptotically, as h~ t, equation (23) predicts that optimal efficiency will be achieved
with p = q. This has indeed been well confirmed numerically, but in addition it was noted
[4] that p = q - 1 may also result in a satisfactory element.

Another possibility for obtaining efficient interpolation schemes for u and w is by
starting with the strains; assume for them a certain variation and integrate for obtaining
u and w. For the 7 d.oJ. element B(2, 3) this would amount to starting with

(24)

where GI' Gz, b l and bz are undetermined coefficients, and ll'1(S) and ll'z(s) include higher
order terms of S.

Integration of the system (24) will furnish a coupled interpolation scheme [3] for 11

and w which includes trigonometric functions. This type of element is also shown [10]
to be very efficient, but unfortunately its derivation for the general case is rather cumber
some.

4. HIGHER ORDER ELEMENTS

Still left to be discussed is the effect on the round-off errors of increasing the order of
the element. To test this numerically an element is employed which has the 11 d.oJ. (UI,

U~I' WI' W~I' W~~l' Uz, U3, wp, W3' W~3' w~p)andinwhich wisinterpolated by a polynomial
of the 5th degree and u by a polynomial of the 4th degree. This element therefore is denoted
here as B(4, 5).
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In order to test the effect of round-off errors with different elements, the problem of a
ring loaded diametrically by concentrated forces is solved twice [in single (24 bits) and
double precision], once with B(2, 3) and once with B(4, 5). It is seen from Fig. 6 that even
though round-off errors in the B(4, 5) calculations become dominant earlier than in the
B(2, 3) calculations, the higher order element permits the achievement of much greater
accuracy. Moreover, the higher order element proves to be more efficient. In spite of the

N

Or-__----'TII~=_T_---=2r3 ~4r3______'T72::......-

-I

-2

-3

FIG. 6. Convergence of the maximal displacement for ring loaded with opposite forces. Calculation carried
out in single (S.P.) and double precision (D.P.) with both the 8(2, 3) and 8(4.5) elements. N denotes the

total number of variables.

fact that B(4, 5) produces a matrix with a band width of only about twice that produced
by B(2,3), the accuracy obtained with two B(4, 5) elements (17 degrees of freedom) is
greater than that achieved with 18 B(2, 3) elements (72 degrees of freedom), using double
precision computations. The number of operations required to solve a symmetric linear
system with N variables and a band width equal to 2k+ 1 is approximately given by Nk2

.

Taking into account the fact that double precision operations are about 6 times slower
than single precision operations, it is found that, where time is concerned, the higher order
element B(4, 5) is about 9 times more efficient than the B(2, 3) element.

5. CONCLUSIONS

For a shell where the flexural and extensional vibration modes can be decoupled, the
spectral condition number Cn(K) of the stiffness matrix K generated by a uniform mesh of
finite elements is expressed by

Cn(K)=Cl(~rN;s, Nes<rjt (25)

Cn(K) = c2N~s' N es > rjt (26)
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where rlt is the radius of curvature to thickness ratio, N es the number of elements per side,
and C I and C2 positive constants. These constants depend only slightly on the order of
the element (the order of the interpolation polynomials inside it).

For the case ofa 1/4 ring, for instance, CI 100, and hence with lOelementsandrlt = 100
the condition number reaches 106

. This is approximately the limit for obtaining significant
results on a computer with 24 bits (7·2 digits).

As the shell becomes more and more shallow, scaling via the variable transformation
, t

II u (27)
h

tends to eliminate the ratio rlt from expression (25) for the condition number and at the
limit (3 = 0, Cn(K) = eN:s as in flat plates.

For a shell which behaves like a membrane because the extensional and flexural modes
cannot be decoupled, the condition number grows as N;s as in second order problems.
(See also Refs. [1, 11].)

As the thickness of the shells is reduced (tiL « 1), the factor (tlh)2 multiplying the
bending energy expression in equation (6) will also be reduced. Since the total energy
(stretching plus bending) is minimized for obtaining the finite element solution, the in
plain strains will therefore be forced to diminish also. However, beyond a certain value of
tiL its further reduction will have no practical influence on the accuracy. This suggests that
for small tiL ratios the bending energy portion can be multiplied by an additional factor ()
such that 15 > 1. An estimate for the value of this factor is found as follows: the relative
contribution of the stretching energy to the displacements is 0(t 2IL 2

). If the required error
in the solution is 10- 11 , then &21L2 = 10- 11 or b = 1O- PUlt2

• With these equalities the
factor (2/h 2 in equation (6) can be replaced by either (jf21h 2 or 10- 11 • Of course, this should
be done only when (tlhl2 < 10- li . In case (tlh)2 is replaced in equation (6) by 10 Ii. the
condition number of the global stiffness matrix will become

Cn(K) C JOliN:, (28)

and (Lltf is removed from the condition number as given in equation (25).
In either case the condition of the stiffness matrix deteriorates rather quickly and this

deterioration inevitably results in serious losses in the accuracy of the computed solution.
Since the natural condition number (in the case of uniform meshes) depends primarily

on the intrinsic parameters of the shell and not so much on the order of the problem, the
relative effect of round-off errors can be made to diminish by increasing the order of the
finite elements. In this regard, the low order finite element schemes, like those generated
from a "flat plate approximation" to the shell, should be avoided.

The higher order elements require more programming labor, but since this effort is
required only once, it is worthwhile.

For obtaining a maximal efficiency in the element (that is, a certain rate of convergence
obtained with the minimal number of degrees of freedom) both the in-plane and transverse
displacements should be interpolated by polynomials of the same order.

It results from equation (20) that if wand u are interpolated by complete polynomials of
degree q and p, respectively, such that p ;:0: q, then the error in the energy is

(29)

Since in the finite element solution the energy is minimized, the actual error in the energy
will be at most that predicted by equation (29).
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The situation in eigenproblems is similar to that in static problems.
If in a flat plate (m = 2) or in a flat membrane (m = 1) the transverse displacement is

interpolated inside the element by a complete set of polynomials of degree p, then the
discretization error (jAr in the rth eigenvalue Ar is given by [l, 12J

(jAr/Ar ~ cN;,2(p+l-m)(Ar/A 1
)(p+l-ml/m (30)

where the constant c is independent of N es and (Ar/Atl.
Regarding the round-off errors in eigenproblems, the relative error in the rth eigenvalue

due to the machine representation of the stiffness and mass matrices K and M is given by
[IJ

(31)

where s denotes here the number of significant digits in the computer. For the shell problem,
if K is normalized such that Jef = 0(1), then introduction of Cn(K) of equation (25) into
equation (31) results in

(32)
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A6cTpaKT-UenblO pa60Tbi RBnReTCR paCCMOTpeHHe !lBYX OCHOBHblX BonpocoB, B aHaJllne KOHe'lHOrO
JneMeHTa 060JIO'leK, a HMeHHO cKopoCTeH CXOlll1MOCTH pe1YJlbTaTOB, nOJlY'leflflblX 111 pa3HbIX cxeM HHTe
pnOJlRI.{"1f lInR nepeMelUeHI1H B nJlOCKOCTI1 If HOpMaJlbHbIX. ]laJlee, HCCJlenyeTcR 3aBHCHMOCTb 'lI1CJla
YCJlOB"H fIOJIy'IeHHOH anre6pall'leCKOH CIlCTeMbl OT p,nHblX napaMeTpOB KaK 060JlO'lK" TaK 11 ,llI1CKpeT
ll3al.{llH.


